
Processing Multimode Binding Situations in Simulation-Based Prediction of
Ligand-Macromolecule Affinities

Akash Khandelwal,† Viera Lukacova,† Daniel M. Kroll, ‡ Soumyendu Raha,§
Dogan Comez,| and Stefan Balaz*,†

Departments of Pharmaceutical Sciences, Physics, Computer Science, and Mathematics,
North Dakota State UniVersity, Fargo, North Dakota 58105

ReceiVed: March 3, 2005; In Final Form: June 13, 2005

The linear response (LR) approximation and similar approaches belong to practical methods for estimation
of ligand-receptor binding affinities. The approaches correlate experimental binding affinities with the changes
upon binding of the ligand electrostatic and van der Waals energies and of solvation characteristics. These
attributes are expressed as ensemble averages that are obtained by conformational sampling of the protein-
ligand complex and of the free ligand by molecular dynamics or Monte Carlo simulations. We observed that
outliers in the LR correlations occasionally exhibit major conformational changes of the complex during
sampling. We treated the situation as a multimode binding case, for which the observed association constant
is the sum of the partial association constants of individual states/modes. The resulting nonlinear expression
for the binding affinities contains all the LR variables for individual modes that are scaled by the same two
to four adjustable parameters as in the one-mode LR equation. The multimode method was applied to inhibitors
of a matrix metalloproteinase, where this treatment improved the explained variance in experimental activity
from 75% for the unimode case to about 85%. The predictive ability scaled accordingly, as verified by extensive
cross-validations.

Introduction

Estimation of binding affinities for ligand-receptor com-
plexes is important for several research areas including structure-
based drug design. The approaches range from scoring
functions1-9 for quick ranking of large libraries of compounds
docked into the binding site to more sophisticated, second-pass
methods for examination of the top candidates from the fast
docking. The latter category spans from methods utilizing single
energy-minimized conformations10-15 to complex and time-
consuming free energy perturbation, thermodynamic integration,
and related approaches based on extensive sampling.16-19 Fairly
accurate binding energy estimates can be obtained by methods
of intermediate complexity, requiring only two molecular
dynamics (MD) or Monte Carlo (MC) simulations, one with
the free solvated ligand and one with the ligand bound to the
solvated receptor. The binding free energy is expressed as the
sum of several contributions. The methods can be classified
based upon various criteria such as (1) the sampling method
(MD20-23 or MC24-26), (2) the treatment of solvent (explicit,20,24-26

continuum,15,21,27or in vacuo15,22), (3) estimation of the elec-
trostatic component of solvation energies (linearized Poisson-
Boltzmann equation,15,22,23,28,29the generalized Born model,21,29,30

or the pairwise Coulomb relations in the explicit solvent25), and
(4) the parameter optimization (used27 or not used23).

To illustrate the approaches, let us have a closer look at the
linear response (LR, also known as linear interaction energy)
method20,31-35 and its extension (ELR).24,36-39 The LR method
correlates binding free energies∆Gi with van der Waals and
electrostatics energies between the ligand and its surroundings,
to which the ELR method adds the solvent-accessible surface
area (SASA) term

Here, Ki is the association constant,R is the universal gas
constant,T is temperature, the subscripti indicates theith
compound, andR, â, γ, andκ are adjustable parameters that
optimize the agreement between experimental∆Gi values and
calculated energy and SASA terms according to eq 1. The angle
brackets denote the ensemble averages, and∆ indicates the
difference between the ensemble averages in the bound and free
ligand states. The ensemble averages of the energies and SASA
seem to be replaceable by the energies and SASA calculated
for the time-averaged structures.22,39 Usually, conformational
sampling leads to better correlations22,39than simpler and faster
minimization, although the opposite cases have been described.15

We observed that outliers in the fits of eq 1 to experimental
data are occasionally associated with larger conformational
changes of the bound ligands during the simulation. These
changes may happen despite careful equilibration, if there are
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∆Gi ) -RT ln Ki ) R∆〈EvdW〉i + â∆〈Eel〉i +
γ∆〈SASA〉i + κ (1)
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several energetically similar conformation states available. In
this communication, we propose a conceptual treatment of such
a situation that is based on the multimode binding mechanism.

Methods

Reversible 1:1 binding of theith ligand Li in m mutually
exclusive orientations or conformations (modes) to the receptor
site R can be schematically written as

The ligand is present as a single species in the receptor
surroundings. The apparent association constantKi for this
process is, on the concentration basis, defined as

Each partial association constantKij can be expressed using eq
1, with the same values of the adjustable parametersR, â, γ,
andκ. The apparent association constant can then be correlated
with the simulation results by a combination of eqs 1 (now with
the subscriptij representing thejth binding mode of theith
compound) and 3

The simple eq 4 is in accordance with published analyses of
formally analogous situations: the rigorous statistical thermo-
dynamic40 description and equilibrium treatment41,42of the mul-
timode interactions of ligands with proteins and kinetic analyses
of reversible unimolecular reactions leading to different prod-
ucts43 or isomers.44 The multimode approach represented by eq
4 was also implemented in the most frequently used ligand-
based method comparative molecular field analysis (CoMFA).45

Notably, eq 4 contains the same adjustable parametersR, â,
γ, and κ as eq 1. The multimode treatment uses a different
correlation equation (eq 4) than the classical one-mode approach
(eq 1) but relies on the same four adjustable parameters. Thus,
eq 4 has 3× m variables (m is the number of binding modes
considered for each ligand) that are equal to the ensemble
averages of van der Waals energies, Coulombic energies, and
SASA terms for individual binding modes. However, (1) allm
van der Waals terms are scaled by the parameterR, (2) all m
electrostatic terms are scaled by the parameterâ, (3) all mSASA
terms are scaled by the parameterγ, and (4) there is only one
constant parameterκ. In eq 4, each mode is represented by one
exponential that corresponds to eq 1 (for this reason, the
separation of the parameterκ from the summation was not made
in eq 4). Each exponential contains the same adjustable param-
etersR, â, γ, andκ, so there are four optimized parameters in
total. After optimization of the parameters by nonlinear regres-
sion analysis of experimental data according to eq 4, the pre-
valence of thejth binding mode can be calculated asKij/ΣKij,
where (1) the partial association constant of thejth modeKij is
calculated from eq 1 with optimized values of adjustable
parametersR, â, γ, andκ and the energy and SASA terms for

the jth mode, and (2) the sum runs through allm partial
association constantsKij that are calculated in the previous step.
The prevalence of individual modes is the outcome of the
parameter optimization. No assumptions about the prevalence
distribution need to be made before optimization. The prevalence
values calculated by this approach are in accordance with the
Boltzmann distribution.

We applied the multimode method to a set of 28 diverse
hydroxamate inhibitors of MMP-9,46 encompassing the follow-
ing structural types:

The complete structures of the inhibitors along with the LR
terms and the experimental and predictedKi values are listed
in the Supporting Information. The ligands exhibit∼4000-fold
difference in binding affinity, with the association constantsKi

ranging from 2.865× 106 to 1.25× 1010 M-1.
The crystal structure of MMP-9 complexed with reverse

hydroxamate inhibitor (file 1GKC) was downloaded from the
Protein Data Bank.47 Three-dimensional structures of ligands
were constructed using the SYBYL6.91 suite of programs48

running under Irix 6.5. The ligands were then docked into the
active site of MMP-9 using FlexX.49,50 Conformations of the
ligands in the active site were selected from the top 30 poses
generated by FlexX using the distance in the interval 1.5-2.5
Å between the hydroxamate oxygens and the zinc atom of the
receptor as the primary criterion and the FlexX ranking as the
secondary criterion.51 Protons were added to the heavy atoms
of the protein, and energy minimization was performed using
constraints to relax the added protons using Tripos force field.52

All heavy atoms were fixed at the experimental coordinates
during energy minimization. The optimized complexes were
then subjected to MD simulations consisting of 15-ps heating
phase, 100-ps equilibration, and 200-ps production period. The
lengths of the bonds between the hydroxamate groups of
inhibitors and the catalytic zinc were constrained to alleviate
the deficiencies of the used force field in the description of metal
coordination. MD simulations for hydrated ligands were per-
formed under similar conditions. The protocol was described
in detail elsewhere.39 The generated ensemble averages are
summarized in the Supporting Information.

Results and Discussion

In our previous study,39 the MD-based LR correlations (eq
1) of the hydroxamate inhibitors46 of MMP-9 behaved anoma-
lously: The quality of correlations did not improve with
increased simulation time, and some outliers adopted compara-
tively different conformations during MD simulations. We
decided to examine whether a correlation taking into account
multiple binding modes could improve the results.

The van der Waals, electrostatic, and solvent-accessible
surface area terms were calculated using the corresponding time-
averaged structures of the complex and the free ligand for eight
25-ps intervals of the 200-ps MD simulations. The time-
averaged structure for each interval represented a binding mode
(0-25 ps, mode 1; 25-50 ps, mode 2; ... 175-200 ps, mode
8). No collinearity between the calculated LR terms, used in

Ki ) ∑
j)1

m

[LR ij]/([L i][R]) ) ∑
j)1

m

Kij (3)

∆Gi ) -RT ln Ki ) -RT ln ∑
j)1

m

exp[-(R∆〈Evdw〉ij +

â∆〈Eel〉ij + γ∆〈SASA〉ij + κ)/RT] (4)
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eqs 1 and 4, was observed. The highest mutual correlation was
seen between the electrostatic and SASA terms (eq 4), with the
correlation coefficientr ) 0.218. The results of the fit of the
data for the classical and multimode LR treatment (eqs 1 and
4, respectively) are summarized in Table 1. The results for the
minimization of the ligands and the binding sites are included
for comparison. A plot of experimental versus calculated
activities is shown in Figure 1.

For minimization and the one-mode treatment, the van der
Waals and electrostatics terms were not significant. For
minimization, the parameter errors for the van der Waals and
electrostatic terms were higher than the optimized parameter
values. Moreover, the parameter for the van der Waals term
had a negative value. For the one-mode treatment, the error
terms were∼60% of the parameter estimates. Inclusion of the
statistically insignificant terms led to negligible improvements
in the correlations: for minimization, tor2 ) 0.445, and for
the one-mode treatment, tor2 ) 0.695 (data not shown).

The multimode model provides significantly better correla-
tions (Table 1, Figure 1) and explains∼85% (r2 ) 0.845) of

the variation in experimental activity with the standard deviation
SD ) 0.862. All three terms included in eq 4 exhibited signifi-
cant contributions to the correlation. The contributions of the
energy terms imply dominant roles of the electrostatic and van
der Waals interactions between the inhibitor and the protein.
The SASA term indicates that the burying of the ligand, which
is exposed to the solvent in the unbound state, is favorable for
complex formation. Division of the SASA term into polar and
nonpolar solvent-accessible surface areas did not increase the
descriptive and predictive power of the model (data not shown).

The robustness of the regression equations and their predictive
abilities were probed by cross-validation. For this purpose, the
fits to the potency data are generated, leaving out one or more
inhibitors from the calibration process. The resulting equation
for each fit is used to predict the potencies of the omitted
compounds. The leave-one-out (LOO) procedure and especially
the leave-several-out (LSO) procedure with a random selection
of a six-member test set that was repeated 200 times provided
a thorough evaluation. The root mean square error (RMSE)
values using LOO (1.008) and LSO (1.012) were only slightly
higher than the RMSE value of the whole data set without any
omission (0.931).

Equation 4 has an interesting property: it selects the binding
modes that contribute most to the binding. The prevalencies
Kij/ΣKij of individual simulation intervals representing the
binding modes for the studied ligands are summarized in the
Supporting Information, along with ligand structures and
experimental and predicted affinities, as well as energy and
SASA terms. Major outliers in the one-mode treatment (ligands
3, 15, and21) are predicted accurately by multimode treatment
(Figure 1). In the case of compound3, the contributions are
∼15% for all modes except modes 1 and 7 (4% and 10%,
respectively). Compound15 shows a similar pattern, but the
minimal contributions are observed for modes 1, 2, and 6.
Compound21 exhibits both positive and negative deviations
from the average: Mode 2 contributes 26% to overall binding,
while modes 1 and 5 represent only 8% and 5%, respectively.
Ligands2, 6, 7, 8, 9, 23, and24 also have a dominant mode
(mode 7, 4, 2, 1, 1, 7, and 8, respectively) representing more

TABLE 1: Correlations of Inhibitory Potencies with Energy and SASA Terms

RMSE

eq sampling
R × 10-2

[mol/kcal]
â × 10-2

[mol/kcal] γ × 10-2 [Å -2] k SD r2 LNOb LOOc LSOd

1a minimization 1.566( 0.350 -14.30( 0.98 1.128 0.435 1.646 1.785 1.750
1 MD (200 ps) 1.656( 0.251 -11.75( 1.04 1.101 0.627 1.338 1.469 1.478
4 MD (8 × 25 ps) 1.639( 0.421 2.231( 0.649 1.121( 0.235 -5.785( 1.588 0.862 0.845 0.931 1.008 1.012

a No conformational sampling, just the minimized complex structures used.b No omission of compounds.c Leave-one-out cross-validation.d Leave-
several-out cross-validation: random selection of a six-member test set, repeated 200 times.

Figure 1. Comparison of the experimental vs calculated binding
affinity (ln K) for the one-mode model (eq 1), with minimization (the
compound number; see Supporting Information for structures) and
conformational sampling (O, eq 1), and for the multi-mode conforma-
tional sampling (b, eq 4). The optimized coefficient values are given
in Table 1.

Figure 2. Binding modes of compounds7 (A), 22 (B), and27 (C). The mode representing 40% or more of the bound ligand is displayed in balls
and sticks (A). The time-averaged structures for 25-ps simulation intervals represent individual modes and are color-coded (modes 1-8, respectively)
cyan, 0-25 ps; blue, 25-50 ps; green, 50-75 ps; magenta, 75-100 ps; orange, 100-125 ps; purple, 125-150 ps; red, 150-175 ps; and violet,
175-200 ps. The structures were superimposed using theR-carbon atoms of the protein.
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than 30% of the total bound ligands. A ligand oscillating around
an equilibrium position should exhibit approximately equal
contributions to binding for all eight binding modes, i.e., in ideal
case, the average prevalence is 12.5% with the standard
deviation SD) 0. The SD values of the mode prevalences
ranged from 1-4 (compounds1, 3, 14, 15, 22, 27, 28) to 12-
15 (compounds2, 7, 8). As illustrated in Figure 2, among
complexes that substantially change the geometry during
simulation, some have one significant binding mode (Figure
2A), while others exhibit an even distribution of binding modes
(Figure 2B). As can be expected, well-behaved complexes with
similar geometries in each simulation period have approximately
equal prevalences of binding modes (Figure 2C).

Conclusions

The developed multimode approach to the LR approximation
resulted, in the studied case of hydroxamate inhibitors of MMP-
9, in correlations with significantly better descriptions and
predictions as compared to classical one-mode LR equation.
The entire simulation period is divided into time slots called
binding modes. The time-averaged structures of bound and free
ligands in the binding modes are used to calculate van der
Waals, electrostatic, and desolvation contributions to binding.
The weights of the contributions are determined by optimization
using a multimode LR equation. The weights also determine
the contributions of individual binding modes to overall binding.
Steady ligands, oscillating around the equilibrium positions,
exhibit an even distribution of binding modes. Mobile ligands,
undergoing substantial geometry changes in the complex during
MD simulations, may or may not preferentially bind in selected
binding modes. If further studies confirm the findings, the
multimode LR approach may become a useful tool for prediction
of binding affinities.
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